

September 16 -18, 2009
Pamplona

BURII O, PEDRO
BUSTINCE, HIMBERTO
DE BAEHS, BERMARD
FODOR, JANOS
(editors)

Title: EUROFUSE WORKSHOP'O9. Preference Modelling and Decision Analysis
Editors: Pedro Burillo, Humberto Bustince, Bernard De Baets and János Fodor
Edited by: Public University of Navarre
Printed by: Lankopi
D.L.: Bl-2394/2009

ISBN: 978-84-9769-242.7
© Authors
© Universidad Pública de Navarra
Printed on acid-free paper
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or trasmitted in any form or by any means, mechanical, photo-copying, recording, or otherwise, without the prior written permission of the publisher and authors.

Distributed by: Seccion de Publicaciones
Universidad Pública de Navarra
Campus de Arrosadía
31006 Pamplona
Fax: 948169300
e-mail: publicaciones@unavarra.es

Organising Committee

Chairmen

B. De Baets
J. Fodor
P. Burillo H. Bustince

Members

E. Barrenechea	M. Pagola
F.J. Fernández	M. Galar
J. Sanz	C. López-Molina
A. Jurío	D. Paternain
C. Guerra	A. Burusco
N. Frago	A. Marín
V. Mohedano	

Program Committee

U. Bodenhofer (Austria)	M. T. Lamata (Spain)
I. Bloch (France)	J. Liu (UK)
T. Calvo (Spain)	V. Loia (Italy)
C. Carlsson (Finland)	L. Martínez (Spain)
J. Chamorro (Spain)	G. Mayor (Spain)
F. Chiclana (UK)	P. Melo-Pinto (Portugal)
I. Couso (Spain)	IR. Mesiar (Slovakia)
S. Cubillo (Spain)	J. Montero (Spain)
G. Deschrijver (Belgium)	J. A. Olivas (Spain)
S. Díz (Spain)	E. Pap (Serbia)
J. Dombi (Hungary)	G. Pasi (Italy)
D. Dubois (France)	J.l. Peláez (Spain)
M. Fedrizai (Italy)	H. Prade (France)
R. Fuentes (Spain)	D. Radojevic (Serbia)
J.L. Garcia-Lapresta (Spain)	H. Rommelfanger (Germany)
I. Georgescu (Romania)	D. Ruan (Belgium)
M. Grabisch (France)	S. Sessa (Italy)
F. Herrera (Spain)	E. Szmidt (Poland)
E. Herrera-Viedma (Spain)	P. Sobrevilla (Spain)
E. Hallermeier (Germany)	V. Torra (Spain)
E. Indurain (Spain)	J. Torrens (Spain)
R. Jensen (UK)	E. Trillas (Spain)
J. Kacprzyk (Poland)	J.L. Verdegay (Spain)
E.P. Klement (Austria)	Z.S. Xu (China)
E. Kere (Belgium)	S. Zadrozny (Poland)
A. Kolesarová (Slovak Republic)	

Linear-OWA Operators

E. Cables, María Teresa Lamata, José Luis Verdegay

Using centered OWA operators in political elections
José Luis García-Lapresta, Miguel Martínez-Panero

Bibliometry

Using choquet integrals for evaluating citation indices in journal ranking Gleb Beliakov, Simon James

The aggregation of bibliometric indices to evaluate the scientific output of researchers: A case of study in the Fuzzy community Francisco Javier Cabrerizo, Sergio Alonso, Emrique Herrera-Viedma, Francisco Herrera.

Applying fuzzy linguistic GDM models in academic library management I.J. Perez, Enrique Herrera-Viedma, J. López-Gijón, Francisco Javier Cabrerizo

Interdisciplinary Applications 2

Pareto-efficient and egalitarian axiomatics for evaluations
of infinite utility Streams
José Carlos R. Alcantud, María Dolores García-Sanz

Some applications of the interval-valued linguistic variables to the interval-valued L-Fuzzy contexts
Cristina Alcalde, Ana Burusco, Ramón Fuentes-González

Searching musical representative phrases using W-indistinguishabilities and proximities
Emerson Castaneda, Luis Garmendia, Matilde Santos

Distance measures in induced and heavy aggregation operators.

The Aggregation of Bibliometric Indices to Evaluate the Scientific Output of Researchers: A Case of Study in the Fuzzy Community

F.J. Cabrerizo
Depl. Software Engineering and Computer Systems
Distance Leaming University of Spain (UNED)
28040, Madrid, Spain
cabrerizo@issi.uned.es

S. Alonso
Dept. Software Engineering
University of Granada
18071, Granada, Spain
zerjioi@ugr.es

E. Herrera-Viedma
F. Herrera
Dept. Computer Science and A.I.
University of Granada
18071, Granada, Spain
\{viedma,herrera\}@decsai.ugres

Abstract

This paper examines how the aggregation of bibliometric indices is an inpropriate way to combine information integrating the best qualities of every aggregated index. 'lo do is, we analyze a new index, the $h g$ mbex, based on the aggregation of the Hirsch's h-index and Egghe's g^{-} index and using the geonetric mean as aggregation operator, and how it provides results that integrate the information from both indices, allowing the combination of their best unalities. Moreover, we study its arrelation with the h - and g-indices and we analyze the results over a yel. of researchers specialized in fuzzy Heories.

Keywords: Aggregation, Research L, waluation, Bibliometric Indices, h mulex, g-index, Geometric Mean.

! Im, roduction

Tr monsure scientific output of researchers is We fersasingly important task for the scienThe community. In fact, nowadays, almost War memarch assessment decision (accepting Sath projects: contracting researchers or Thilins scientific prizes) depends to a great Fisul anon the scientific merits of the inWeat researchers. Jo do so, the computation Whatimuetric measures has attracted signifiWH merest, due to the benefits of obtaining Tumbased and fair criterion [3, 19].

There exist several different indicators that allow the quantification of both the production of scientists and the impact of their publications. In 2005, J.E. Hirsch presented the h-index [14], which, in a short period of time, has becane extremely popular. 'The original definition was:
> "A scientist has index h if h of his or her N_{p} papers have at least h citations each, and the other $\left(N_{p}-h\right)$ papers have $\leq h$ citalions each."

The h-index has attracted a lot of attention among scientometricians and information scientists, and it has been applied to a variety of areas $\{6,8,9\}$ and it has been analyzed in some studies [12, 18]. Furthemore, Egghe [13] and Alonso et al. [2] have developed two review papers about the h-index, and a comprehensive list of h-index related publications can be found at the web page: http://sci2s.ugr.es/hindex/biblio.php.

The main advantage of the h-index is that it combines a measure of quantity and impact in a single indicator, aspects that traditionally have been measured separately by using different indices. However, the h-index presents other drawbacks that have been pointed out in the literature $[4,7]$. To overcome these issues, several authors have proposed variants of the h-index, each of them usually centering its attention on a particular aspect of the h-index $[5,11,15,19]$. One of the h-related indices that has got more attention is the so called 9 -index, presented by Egghe in 2006 [10]. 'The g-index is defined as follows:
"A scientist has index g if g is the highest rank such that the top 9 papers have, logether, at least g^{2} citations. This also means that the top $g+1$ papers have less than $(g+1)^{2}$ citations."

As Bornmann et al. [5] point out, the different indices stand for very different dimensions of the scientist's research output, but they can complement each other very well. Therefore, the combination of different indices using some aggregation operator will provide us a more complete evaluation of the scientific production of researchers.
One of the aggregation operators, which can be used to combine the information provided by different bibliometric indices, is the geometric mean, because, among its properties, it takes into account all the aggregated values and it is not influenced by extremely high values, obtaining a value which fuses the information provided by every aggregated value.
In [17], Rousseau states:
"As to the h- and the g-index: they do measure different aspects of a scientist's publication list. Certainly the h-index does not tell the full story, and, allhough a more sensitive indicator than the h-index, neither does the g-index. Taken together, g and h present a concise picture of a scientist's achievements in terms of publications and citations."

Following this idea, in [1], Alonso et al. present a combined index, called hg-index, based on the aggregation of the h - and g-indices and using the geometric mean as aggregation operator. This index tries to fuse all the benefits of both previous measures while minimizing the drawbacks that each one of them presented.
The aim of this paper is to examine how the aggregation of bibliometric indices, which measure different aspects of the scientific production of researchers, can provide us with a more complete evaluation of the scientific
output of researchers than if only one indes is used. 'lo do so, we show how the hig index fuses the information that the h - and is indices provide separately. Furthermore, wa study the correlation among the h-, g^{-}and hg - indices and we analyze the results own is set of researchers specialized in fuzzy thenton:
The paper is set out as follows. Section introduces the geometric mean and some of ite properties. In Section 3, we present thr hit index. In Section 4, the hg-index is applind to an example where some authors spectalizel to fuzey theories are compared. In addition, Ho correlation among the h-, g - and $h g$ - indiote is studied. Finally, some concluding remmela are pointed out in Section 5.

2 The Geometric Mean

The geometric mean is a type of mom on the erage, which indicates the central temmentit typical value of a set of numbers. It is a wheme as the n-th root of the product of a set tat numbers. The geometric mean can be thellat stood in terms of geometry as the promity mean of two numbers, a and b, is simply side length of the square whose arm is what to that of a rectangle with side lengtis of al b.

Some properties of the geometric mont the following:

- It is the only one.
- It takes into account all the valuem ot set of numbers.
- It only applies to positive mumber.
- It is the center of gravity of Im ${ }^{\text {I }}$ numbers in multiplicative ternas.
- It is more robust than the amtites mean to high values, but not thillas. ues.
- It is more than or equal to the momss value of the set of numbers and loses or equal to the arithmetic memm tof of numbers.

If l'igure 1, there is a representation of the frowth of the geomerric mean as function of and b in $[0,1] \times[0,1]$. It can be seen how the geometric mean of two numbers, a and b, sifms the infuence of a high value of b when the value of a is low.

Pume 1: The growth of the geometric mean Wa: finction of a and b in $[0,1] \times[0,1]$

THe Thg-Index

If: 11 - and g - indices incorporate several inmroting properties about the publications of *smancher and, therefore, both should be whow inlo account to measure the scientific Bulput of researchers:

* The h-index mainly reflects the number If most cited articles (h-core) of a resurcher, but the actual number of citalifons does not influence its value.
* The y-index combines the number of Incsi cited articles of a researcher with the intensity of their citations.

II, Ahonso et al. present the $h g$-index, that Wuale luse the different aspects of evaluation Thall previous measures.
Piflitition 1. The $h g$-index of a researcher Gemputed as the geometric mean of his/her athel y indices, that is:

$$
h g=\sqrt{h \cdot g}
$$

Wu fivial to demonstrate that $h \leq h g \leq g$ Wibit $h g-h \leq g-h g$, that is, the $h g$-index Thapmeds to a value nearer to h than to g.

Some benefits of this index are the following:

- It is very simple to compute once the h and g - indices have been obtained.
- 'Jhe hg-index is valued in the same scale as both h - and g - indices (both represent the number of papers that comply with a condition about their citations). Thus, the $h g$-index is easy to understand and to compare with those existing indices.
- It takes into account the number of citations of the highly cited papers (the h-index is insensitive to highly cited papers) but it significantly reduces the impact of single very high cited papers (a drawback of the g-index), thus achieving a better balance between the impact of the majority of the best papers of the author and very highly cited ones.
- It provides more granularity than the h and g - indices. This is specially interesting when compared with the h-index, because increasing the h-index is difficult (more when the h-index is high) and it is usual to find that many different researchers have the same h-index with a very different number of publications and citations.

4 Case of Study

In this section, we analyze the behavior of the $h g$-index in comparison with the h - and g-indices in an example where some authors specialized in fuzzy theories are compared, and we study the correlation among these indices.

4.1 Example Based on Researchers in Fuzzy Logic and Soft Computing

In the following, we present an example of use of the $h g$-index in the evaluation of the scientific output of researchers. In [16], the top authors with the word fuzzy in the ISI Web of Knowledge are shown. We part from the fifteen most cited researchers and we compute the h-, g - and $h g$-indices about each one of them. 'This information has been collected on 01-05-2009 and it is shown in Table 2.

Table 1: Researchers ranked by their $h-, g$-, and $h g$ - indices.

	h		g		$h g$
H. Prade	45	L.A. Zadel	156	L.A. Zadeh	72.83
R.R. Yager	41	M. Sugeno	83	H. Prade	58.48
D. Dubois	41	R.R. Yager	76	R.R. Yager	55.82
J.C. Bezdek	39	H. Prade	76	D. Dubois	55.45
F. Herrera	38	D. Dubois	75	J.C. Beadek	52.25
L.A. Zadeh	34	J.M. Mendel	74	J.M. Mendel	49.42
J.M. Mendel	33	J.C. Beadek	70	F. Merrera	47.35
W. Pedrycz	33	F. Herrera	59	W. Pedrycz	41.82
S.K. Pal	28	W. Pedrycz	53	M. Sugeno	41.75
H. Ishibuchi	28	S.K. Pal	53	S.K. Pal	38.52
J.J. Buckley	27	H. Ishibuchi	51	H. Ishibuchi	37.79
N.R. Pal	22	J.J. Buckley	51	J.J. Buckley	37.11
M. Sugeno	21	N.R. Pal	48	N.R. Pal	32.50
D.A. Linkens	21	R. Lowen	40	R. Lowen	28.28
R. Lowen	20	D.A. Linkens	32	D.A. Linkens	25.92

Table 2: List of researchers with their h-, gand $h g$-indices.

	h	g	$h g$
L.A. Zadeh	34	156	72.83
R.R. Yager	41	76	55.82
H. Prade	45	76	58.48
D. Dubois	41	75	55.45
M. Sugeno	21	83	41.75
J.M. Mendel	33	74	49.42
J.C. Bezdek	39	70	52.25
W. Pedrycz	33	53	41.82
S.K. Pal	28	53	38.52
N.R. Pal	22	48	32.50
R. Lowen	20	40	28.28
F. Herrera	38	59	47.35
H. Ishibuchi	28	51	37.79
J.J. Buckley	27	51	37.11
D.A. Linkens	21	32	25.92

If we pay attention to Table 2, we can see how the researchers obtain significant variations among the values of their indices. It proves that these indices stand for very different aspects of the scientist's research output: whereas the h-index refects the core of most cited papers, but it does not take into account the actual number of citations, the g index provides more importance to the most.
cited papers of the researcher. Pinally, the hg-index takes into account both asperts at the scientific output of each researcher innt, therefore, provides us a more balanced whw of the scientific output of researchers.
In fact, if we rank the diferent researchoss its cording to the different indices (Table 1), w can see that the $h g$-index provides more pmote ularity than any of the h - and g - indices wol arately. This is an advantage of the agemem tion of bibliometric indices as it is more likede to provide a complete ordering of rescathlub because it takes into account the informande provided by every aggregated index.

If we compare M. Sugeno with respect hill Linkens, we see that they present the smow h-index (21), while their g-indices ane wor different (83 and 32 , respectively). 'This detected by the hg-index, which awards to Sugeno with respect to D.A. Linkens. Shel larly, if we compare W. Pedrycz with ramut, to S.K. Pal, we see that they present flatsome g-index (53), while their h-indices are very d : ferent (33 and 28 , respectively). This ata ${ }^{4}$ detected by the hg-index, which award: Pedrycz with respect to S.K. Pal.

The problem is that the h - and g - indiss measure different dimensions of the scientys research output. However, the $h g$-indes (I)

Winuishes better among researcher because it Gkes into account the information provided Fthe h - and g-indices.

Tom the example, we can say that, generalify speaking, the hg-index provides us a more Tolitnced view of the scientific output of rewhelors than the h - and g - indices sepaTuitly. In addition, it provides us a more fineFaned measurement to compare researchers tome efliciently.

1.2 Correlation Among the Indices Based on the Example

The lact that the h - and g - indices measure mitiment dimensions of the scientist's research Tutput can be proved by the weak correlation Whwen these indices. To quantify it, as it is Uef dear whether the values of the indices folToe it normal distribution, we have computed \#umrman's rank-order correlation coefficients ((lable 3).

Fhk: 3: Spearman's rank-order correlation walicients ρ.

ρ	h	g	$h g$
h	1.000	0.637	0.886
g	-	1.000	0.917
$h g$	-	-	1.000

Ti this case, we show the Spearman's rankTher correlation coefficients among all the Tubied indices. These data speak for themThes The correlation between the h - and g Whese is 0.637 , which is low and can be exTimed because the h-index can be low while THe y index can be high due to that a few winss receive many citations. However, the Jrctalion between the $h g$ - and h - indices is Theti and between the hg - and g - indices is 47\%. i.e, the correlation between the hgTilog and the h - and g - indices is high. To Wualize it, Figure 2 shows the h - and g - inTew in dependence on the $h g$-index.

Teme, laking into account the results drawn The above section and the high correlation Til the h - and g - indices, we can state that The ligindex is homogeneous, robust, has a Wit hehavior and allows one to obtain an

Figure 2: Scatter plot of h - and g - indices versus $h g$-index
adequate ranking among researchers. We see how the aggregation of bibliometric indices provides us a more complete ordering than if we use the indices separately.

5 Concluding Remarks

In this work, we have analyzed how the aggregation of bibliometric indices in an appropriate way can provide us a more complete view of the scientific output of researchers. Using the $h g$-index, which integrates the best. qualities of the h - and g - indices using the geometric mean as aggregation operator, we have shown how it is possible to allow an index more complete without increasing the complexity in its computation. Therefore, the aggregation of bibliometric indices provide us significant advantages as a more granularity to compare researchers more efficiently and a more balanced view of the scientific output of researchers. However, although the $h g$-index shares the same scale that the h - and g - indices, it certainly does not have the case of interpretation of either the h - or g-index.

Acknowledgements

This paper has been developed with the financing of FEDER funds with the PEPRRI project (PET2007-0460) and FUZZYLING project (TIN2007-61079).

References

[1] S. Alonso, F.3. Cabrerizo, E. HerreraViedma and F . Herrera hg-index: A new index to characterize the scientific output of researchers based on the h - and g - indices. Scientometrics (2009). In press.
[2] S. Alonso, F.J. Cabrerizo, E. HerreraViedma and F . Herrera. h-index: A review focused in its variants, computation and standardization for different scientific fields. Journal of Informetrics (2009). In press.
[3] J. Bar-Ilan. Informetrics at the beginning of the 21st century - A review. Journal of Informetrics 2(1) (2008) 1-52.
(4) L. Bormmann and M.-D. Daniel. What do we know about the h-index? Journal of the American Society for Information Science and 'lechnology 58(9) (2007) 1381 1385.
[5] L. Bormmann, R. Mutz and H.-D. Daniel. Are there better indices for evaluation purposes than the h-index? A comparison of nine different variants of the h index using data from biomedicine. Journal of the American Society for Informalion Science and Technology 59(5) (2008) 830-837.
[6] T. Braun, W. Glänzel and A. Schubert. A Hirsch type index for journals. Scienlometrics 69(1) (2006) 169173.
(7) R. Costas and M. Bordons. The h-index: Advantages, limitations and its relation with other bibliometric indicators at the micro level. Journal of Informetrics 1 (2007) 193 203.
[8| B. Cronin and L. Meho. Using the h index to rank influential information sci entist. Journal of the American Society for Information Science and Technology 57(9) (2007) 1275-1278.
[9] E. Csajbók, A. Berhidi, L. Vasas and A. Schubert. Hirsch-index for countries based on Essential Science Indicators
data. Scientometrics 73(1) (2007) 91 117.
[10] L. Egghe. Theory and practise of the 4index. Scientometrics 69(1) (2006) 131 152.
[11] L. Egghe. Dynamich-index: The Hirsh index in function of time. J. of the Amat ican Society for Information Science and Technology $58(3)(2007) 452454$.
[12] L. Egghe. Examples of simple trans formations of the h-index: Qualitative and quantitative conclusions and conso. quences for other indices. Journal of h. formetrics 2(2) (2008) 136-148.
[13] L. Egghe. The hirsch-index and re lated impact measures. Annual Rean's. of Information Science and Technoloug (2009). In press.
[14] J.E. Hirsch. An index to quantify an in dividual's scientific research output. I'w. ccedings of the National Academy of Sis. ences 102 (2005) 16560-16572.
[15] B. Jin, L. Liang, R. Rousseau and I, Egghe the R- and AR- indices: Chis plementing the h-index. Chinese Scimm Bulletin $52(6)$ (2007) $855-863$.
[16] J.M. Merigó and A.M. Gil-Lafuembe, As overview of fuzzy research in the ISI Wofs of knowledge. Proceedings of the Wel: London, England (2009). In press.
[17] R. Rousseau. New development:s ib lated to the Mirsch index. Scimo Focus 1(4) (2006) 23-25 (in (hil) nese). English version availably ais http://eprints.rclis.org/6376/.
[18] R. Rousseau. Woeginger's axiomatisallus of the h-index and its relation to the of index, the $h^{(2)}$-index and the r^{2}-indeac. Journal of Informetrics 2(4) (2008) 24 372.
[19] A. Sidiropoulos, D. Katsaros and Manolopoulos. Generalized Hirsch index for disclosing latent facts in i" tation networks. Scientometrics 7 , (2007) $253-280$.

